

=

=

=
k^s^i=

mlpqdo^ar^qb=
p`elli=

jlkqbobvI=`^ifclokf^=

=

NPS-GSBPP-07-012

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

Software Architecture: Managing Design for Achieving

Warfighter Capability

12 October 2007

by

Brad Naegle, Senior Lecturer, and

Diana Petross, Lecturer

Graduate School of Business & Public Policy

Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Naval Postgraduate School
Monterey, California

Daniel T. Oliver Leonard A. Ferrari
President Provost

The Acquisition Chair, Graduate School of Business & Public Policy, Naval

Postgraduate School supported the funding of the research presented herein.

Reproduction of all or part of this report is authorized.

The report was prepared by:

Brad Naegle, Senior Lecturer
Graduate School of Business & Public Policy

Diana Petross, Lecturer
Graduate School of Business & Public Policy

Reviewed by:

Robert N. Beck
Dean, Graduate School of Business & Public Policy

Released by:

Dan C. Boger, Ph.D.
Acting Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

- i -

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
12 October 2007

3. REPORT TYPE AND DATES COVERED
1 October 2006 through 30 September 2007

4. TITLE AND SUBTITLE
Software Architecture: Managing Design for Achieving Warfighter Capability

5. FUNDING

6. AUTHOR (S)
Brad Naegle and Diana Petross

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES)
NAVAL POSTGRADUATE SCHOOL
GRADUATE SCHOOL OF BUSINESS AND PUBLIC POLICY
555 DYER ROAD
MONTEREY, CA 93943-5103

8. PERFORMING ORGANIZATION REPORT
NUMBER
NPS-GSBPP-07-012

9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES)

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words.)
This research analyzes the problems associated with poorly performing DoD software-intensive systems, focusing on the critical

software architectural design process. DoD’s software-intensive systems continue to experience software related performance,
supportability, and security shortfalls resulting in system software failures, costly and resource-intensive support requirements, and security
vulnerabilities that negatively impact the warfighter missions.

As software performance is significantly determined by the software architecture, this research examined current practices for
controlling and influencing the system software design process metrics and analyzed other available design-analysis methodologies for
applicability to the DoD acquisition process. Specifically, methods were analyzed for the ability to integrate the user-oriented Joint
Capabilities Integration and Development System (JCIDS), the Systems Engineering Process (SEP), and the DoD Acquisition Management
Model.
14. SUBJECT TERMS
software architecture, system software design, metrics, Joint Capabilities Integration and Development System
(JCIDS), Systems Engineering Process (SEP), DoD Acquisition Management Model

15. NUMBER OF
PAGES 57

 16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT: UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE: UNCLASSIFIED

19. SECURITY CLASSIFICATION OF
ABSTRACT: UNCLASSIFIED

20. LIMITATION OF
ABSTRACT: UU

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

- ii -

THIS PAGE INTENTIONALLY LEFT BLANK

- iii -

Abstract

This research analyzes the problems associated with poorly performing DoD

software-intensive systems, focusing on the critical software architectural design

process. DoD’s software-intensive systems continue to experience software related

performance, supportability, and security shortfalls resulting in system software

failures, lack of necessary Open Architecture (OA) features, costly and resource-

intensive support requirements, and security vulnerabilities that negatively impact

the warfighter missions.

As software performance is significantly determined by the software

architecture, this research examined current practices for controlling and influencing

the system software design process metrics and analyzed other available design-

analysis methodologies for applicability to the DoD acquisition process. Specifically,

methods were analyzed for the ability to integrate the user-oriented Joint Capabilities

Integration and Development System (JCIDS), the Systems Engineering Process

(SEP), and the DoD Acquisition Management Model.

Keywords: software architecture, system software design, metrics, Joint

Capabilities Integration and Development System (JCIDS), Systems Engineering

Process (SEP), DoD Acquisition Management Model

- iv -

THIS PAGE INTENTIONALLY LEFT BLANK

- v -

Acknowledgements

The authors would like to thank Rear Admiral (Ret) James Greene for his

remarkable contribution to the DoD acquisition community as the Acquisition Chair

for the Naval Postgraduate School. His efforts have enabled these research efforts

that address current and future problems, and vastly improve the education product

that NPS delivers.

We also acknowledge the professional program management for the research

series led by Ms. Karey Shaffer. She and her team enable researchers to

concentrate on the product while they expertly manage the administration and

editorial tasks.

Special thanks to Mr. David Wood who has improved this product through his

professional and thorough editorial skills.

- vi -

THIS PAGE INTENTIONALLY LEFT BLANK

- vii -

About the Authors

Brad R. Naegle, Lieutenant Colonel, US Army (Ret.), is a Senior Lecturer
and Academic Associate for Program Management Curricula at the Naval
Postgraduate School, Monterey, California. While on active duty, LTC (Ret.) Naegle
was assigned as the Product Manager for the 2 ½-ton Extended Service Program
(ESP) and USMC Medium Tactical Vehicle Replacement (MTVR) from 1994 to 1996
and served as the Deputy Project Manager for Light Tactical Vehicles from 1996 to
1997. He was the 7th Infantry Division (Light) Division Materiel Officer from 1990 to
1993 and the 34th Support Group Director of Security, Plans and Operations from
1986 to 1987. Prior to that, LTC (Ret.) Naegle held positions in Test and
Evaluations and Logistics fields. He earned a Master of Science Degree in Systems
Acquisition Management (with Distinction) from the Naval Postgraduate School and
an undergraduate degree from Weber State University in Economics. He is a
graduate of the Command and General Staff College, Combined Arms and Services
Staff School, and Ordnance Corps Advanced and Basic Courses.

Brad Naegle
Senior Lecturer
Graduate School of Business & Public Policy
Naval Postgraduate School
Monterey, CA 93943
Tel: (831) 656-3620
E-mail: bnaegle@nps.edu

Diana Petross is a Lecturer at the Naval Postgraduate School, Monterey
California. Ms. Petross served as Chair of the KC-135 Source Selection Team from
2005 to 2006. She was the Program Manager of VC-25 (Air Force One), C-20
(Gulfstream IV), T-43 (B-737), Navy E-6 (B-737), Peace Lotus (Egyptian FMS
Program) and the Air Force Academy aircraft program from 2003-2005. Prior to that,
she was the sustainment Program Manager for the B-1B Bomber for the Air Force.
Throughout her Civil Service career, she held various positions in the logistics and
program management career fields and was an air-traffic controller. Ms. Petross
has a Master’s Degree in Business and Public Policy from the University of
Oklahoma and a BS from the University of Central Oklahoma.

Diana Petross
Lecturer
Graduate School of Business & Public Policy
Naval Postgraduate School
Monterey, CA 93943
Tel: (831) 656-7646
E-mail: dpetross@nps.edu

- viii -

THIS PAGE INTENTIONALLY LEFT BLANK

- ix -

=

=

=
k^s^i=

mlpqdo^ar^qb=
p`elli=

jlkqbobvI=`^ifclokf^=

=

NPS-GSBPP-07-012

Software Architecture: Managing Design for Achieving

Warfighter Capability

12 October 2007

by

Brad Naegle, Senior Lecturer, and

Diana Petross, Lecturer

Graduate School of Business & Public Policy

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

- x -

THIS PAGE INTENTIONALLY LEFT BLANK

- xi -

Table of Contents

Executive Summary ..xiii

1. Introduction ...1

2. Software Requirements Impact ..3

a. Software Engineering Environment3

b. Performance Specifications and the Work Breakdown
Structure (WBS)..4

c. Software Quality Attributes ...5

d. Maintainability, Upgradability,
Interoperability/Interfaces, Reliability, and
Safety/Security (MUIRS) Analytic Technique........................6

3. Software Architecture Characteristics11

a. Software Developer Effort...11

b. Software Functionality and Design Architecture12

c. Work Breakdown Structure...12

d. Systems Engineering Process ..14

e. Attribute-driven Design ...15

4. Software Architecture Analysis..17

a. Understanding Quality Attributes in Context17

b. Operational Scenario Development18

c. Failure Modes and Effects Criticality Analysis
(FMECA)...19

d. Architectural Trade-off AnalysisSM20

e. Test-case Development..24

f. Implementing ATAM through Program Design
Reviews ..26

5. Architectural Analysis Products ..27

- xii -

a. Architecture Documentation and the Preliminary
Design Review (PDR)...27

b. Architecture Documentation..27

c. Scenario Inventory..28

d. Software and System Test Program28

e. Software Design Metrics...29

6. Summary ..31

List of References ..35

Initial Distribution List ...39

- xiii -

Executive Summary

Software developers will expend fifty percent or more of the development

resources designing the architecture for software-intensive systems. The systems

are increasingly dependent on the software for system functionality with systems

functions 80 percent controlled or provided by software. As nearly all of the

performance attributes required are dependent on the architectural design for

effectiveness and efficiency, the resources expended are more than justified. In

addition, net-centric and system-of-systems (SoS) warfighting platforms will likely be

developed in an incremental or evolutionary manner, which are significantly

dependent on an Open-systems Architecture (OA) to ensure interoperability of

systems and capabilities as they are added to the network or SoS.

While it is essential that system requirements be well defined, they are

insufficient for designing the software architecture as the developer has no context

or priority in which to base design decisions. Users and other Government

stakeholders must provide context and priority to even well-defined requirements to

attain the total systems performance needed by the warfighter. This research

examines the Software Engineering Institute’s Architecture Trade-off Analysis

Methodology sm (ATAM) as a tool for placing defined requirements into context and

prioritizing missions, functions, tasks, and procedures to facilitate effective

architectural design. The ATAM provides analytical methodologies for architectural

design decisions for much more than just trade-offs, as the title might lead one to

believe. The ATAM specifically analyzes the systemic need for OA design,

impacting current and future interoperability performance. This research analyzes

the potential effectiveness of ATAM for providing analytical methodologies for design

decisions and integrating three key DoD processes; 1) The Joint Capabilities

Integration and Development System (JCIDS), the user-oriented requirements

generation system; 2) The DoD Program Management and Acquisition Systems,

providing the conduit for effective communication and development hand-off

between the software developer and DoD stakeholders; 3) and the Systems

- xiv -

Engineering Process (SEP), considered essential for successful system

development.

The ATAM provides an excellent analytical tool and successfully integrates

the JCIDS through user/stakeholder led scenario development and prioritization.

The three categories of scenarios provides a systems analysis that helps ensure that

all of the systems’ attributes are well-understood, presented in context, and

prioritized, which supports a SEP approach. Development of the ATAM test cases

clearly communicates to the developer how performance will be measured and

assessed. The ATAM directed architectural design process is oriented on the

user/stakeholder developed scenarios fostering effective Government to developer

communication and providing a seamless handoff of design responsibilities with

known assessment criteria defined by the ATAM test cases. The focus remains on

developing a design that satisfies warfighter effectiveness and suitability criteria,

which is the overarching goal of the DoD acquisition system.

The ATAM provides a useful framework for the architectural design process

and integrates the user/stakeholder with the software developer in a joint effort that

is structured, controlled, and measurable. The insights to the design process helps

ensure that decisions and trade-offs are conducted with a clear understanding of

user/stakeholder needs and priorities. The system design metrics are co-developed,

highly leveraged, and well understood. Effective management through the critical

software architectural design process is significantly enhanced through the ATAM

implementation.

- 1 -

1. Introduction

Software architecture forms the backbone for any successful software-
intensive system. An architecture is the primary carrier of a software
system’s quality attributes such as performance or reliability. The right
architecture—correctly designed to meet its quality requirements, clearly
documented, and conscientiously evaluated—is the linchpin for software
project success. The wrong one is a recipe for guaranteed disaster.
(Software Engineering Institute/Carnegie Mellon, 2007, 1)

Software engineers will typically spend 50% or more of their total software

development time designing software architecture, and that architecture may provide

up to 80% of a modern weapon system’s functionality. Increasingly, these systems

will operate within a network or other system-of-systems’ architecture requiring a

robust Open-systems Architecture (OA) design. Obviously, the requirements driving

that architectural design effort are critical for achieving the warfighter capability

sought. Managing the architectural design process, including tracing requirement to

functions, insight into the design process, and control of the design effort are equally

critical for the successful development of the capability needed by the warfighter.

The DoD typically monitors and controls system technical development

through implementation of the Baselines, Audits and Technical Reviews within an

overarching Systems Engineering Process (SEP) (Defense Acquisition University,

2004, December, chap. 4). Because of the relatively immature software engineering

environment, significantly more analysis and development of the requirements are

required. In addition, the software architectural design effort is dependent on in-

depth requirements analysis, is resource intensive, and must occur very early in the

developmental process. Effective management and implementation of design

metrics are essential in developing software that meets the warfighters’ needs. This

management and metrics effort supplements and supports the system’s technical

development through the Baselines, Audits and Technical Reviews.

There are numerous variations and models of the Systems Engineering

Process (SEP). This research uses the model depicted in Figure 1 (below), which

- 2 -

illustrates the systems engineering functions described throughout this paper. The

concepts are transferable to the SEP “V” model currently used by the DoD.

Figure 1. Systems Engineering Process

- 3 -

2. Software Requirements Impact

The importance of system software requirements development to the

potential success of software-intensive systems development cannot be overstated.

Underdeveloped, vaguely articulated, ill-defined software requirements elicitation

has been linked to poor cost and schedule estimations—resulting in disastrous cost

and schedule overruns. In addition, the resulting products have been lacking

important functionality, are unreliable, and have been costly and difficult to

effectively sustain (Naegle, 2006, September).

Using the SEP approach, the explicit user capabilities requirements specified

in the Joint Capabilities Integration and Development System (JCIDS) provides the

Input for system requirements analyses. These analyses are intended to illuminate

all system-stated, -derived and -implied requirements and quality attributes

necessary to achieve the capabilities needed by the warfighter. The Work

Breakdown Structure (WBS) is a methodology for defining ever-increasing levels of

performance specificity—using the SEP to guide the development of each

successive layer (Department of Defense, 2005, July, pp. 1-5).

a. Software Engineering Environment
The software engineering environment is not mature, especially when

compared to hardware-centric engineering environments. Dr. Philippe Kruchten of

the University of British Columbia remarks, “We haven’t found the fundamental laws

of software that would play the role that the fundamental laws of physics play for

other engineering disciplines” (Kruchten, 2005, p. 17). Software engineering is

significantly unbounded as there are no physical laws that help define environments;

and to date, no industry-wide dominant language, set of engineering tools,

techniques, reusable assets, or processes have emerged.

This lack of engineering maturity impacts both requirements development and

the subject for this research, design of the architecture, which will be discussed later.

To compensate for the relative immaturity of the software engineering environment,

- 4 -

the DoD must conduct significantly more in-depth requirements analysis and provide

potential software developers detailed performance specifications in all areas of

software performance and sustainability.

b. Performance Specifications and the Work Breakdown
Structure (WBS)
Since the implementation of Acquisition Reform in the Nineties, detailed

specifications have been replaced with performance specifications in order to

leverage the considerable experience and expertise available in the defense

contractor base. In most hardware-centric engineering disciplines, the expertise the

DoD seeks to leverage includes a mature engineering environment in which

materials, standards, tools, techniques and processes are widely accepted and

implemented by industry leaders. This engineering maturity helps to account for

derived and implied requirements not explicitly stated in the performance

specification. Three levels of the WBS may provide sufficient detail for vendors to

develop a desired system in a mature engineering environment, such as the

automotive field. For example, an automotive design that provides for easy

replacement of wear-out items such as tires, filters, belts, and batteries obviously

provides sustainability performance that is absolutely required. Most performance

specifications do not explicitly address this capability as they would be automatically

considered by any competent provider within the mature automotive engineering

environment.

In stark comparison, the software engineering environment offers little

assistance in compensating for derived and implied requirements, and developers

are limited to respond, almost exclusively, to the explicit requirements provided. The

DoD Handbook 881A, “Work Breakdown Structures for Defense Materiel Items,”

recommends a minimum of three levels be developed before handoff to a contractor.

If a program is expected to be high-cost or high-risk, it is critical to define the system

at a lower level of the WBS (Department of Defense, 2005, July, p. 3). Complex

weapon systems are nearly always high-cost, and the complex software

development these systems require almost always means that the development

- 5 -

effort is high-risk, as well. The WBS and performance specification must,

consequently, be significantly more developed to provide the software engineer

enough information and insight to accurately estimate the level of effort needed—

cost and schedule—and to actually produce the capabilities needed by the

warfighter. Contracts resulting from proposals that are based on underdeveloped,

vague, or missing requirements typically result in catastrophic cost and schedule

growth as the true demands of the software development effort are discovered only

after contract award.

The WBS provides the basis for the vendors’ performance specification. It is

also a powerful communications medium with potential contractors, as its upper

levels provide a functional system breakdown structure from the DoD’s perspective.

The same WBS continues to be developed by the contractor, eventually providing

the detailed breakdown structure: the basis for the cost and scheduling estimates

provided in the proposals and used in the Earned Value Management (EVM) metrics

during execution.

c. Software Quality Attributes
As the system requirements are developed, software quality attributes are

identified and become the basis for designing the software architecture. One

methodology for fully developing the software attributes is to use the Software

Engineering Institute’s Quality Attribute Workshop (QAW), which is implemented

before the software architecture has been created and is intended to provide

stakeholders’ input about their needs and expectations from the software (Barbacci

et al., 2003, August, p. 1).

While the QAW would certainly be useful after contract award, conducting the

workshop between combat developers/users and the program management office

before issuance of the Request for Proposal (RFP) would provide an improved

understanding of the requirements, enhance the performance-specification

preparation, and improve the ability of the prospective contractors to accurately

propose the cost and schedule. This approach would support the goals of the

- 6 -

System Requirements Review (SRR), which is designed to ascertain whether all

derived and implied requirements have been defined.

The QAW process provides a vehicle for keeping the combat developer and

user community involved in the DoD acquisition process, which is a key goal of that

process. In addition, the QAW includes scenario-building processes that are

essential for the software developer to design the software system architecture

(Barbacci et al., 2003, August, pp. 9-11). These scenarios will continue to be

developed and prioritized after contract award to provide context to the quality

attribute identified for the system. Specific recommendations for this process will be

discussed later.

d. Maintainability, Upgradability, Interoperability/Interfaces,
Reliability, and Safety/Security (MUIRS) Analytic
Technique
The QAW provides the “how,” and the performance requirements (with

Maintainability, Upgradability, Interoperability/Interfaces, Reliability, and

Safety/Security (MUIRS) analytic technique) provides the “what”—or at least a

significant portion of it. The MUIRS elements also help capture the need for Open-

systems Architecture (OA), especially in the Maintainability, Upgradability, and

Interoperability/Interfaces elements. Much of the software performance that typically

lacks consideration and is not routinely addressed in the software engineering

environment can be captured through development and analysis of the MUIRS

elements. Analyzing the warfighter requirements in a QAW framework for

performance in each MUIRS area will help shareholders identify software quality

attributes that need to be communicated to potential software contractors (Naegle,

2006, September, pp. 17-24). While this technique would be effective within any

system, it is especially effective in compensating for the lack of software engineering

maturity and in conveying a more complete understanding of the potential software-

development effort, resulting in more realistic proposals.

- 7 -

The MUIRS analytical approach provides a framework to capture, develop,

and document derived and implied requirements—which may be vaguely alluded to

in or missing from the user/combat developer’s requirements documents. For

example, a user requirement might be simply presented in terms like, “The network

must be secure in all modes within the intended environment.” Without further

development, the software engineer may interpret that requirement in many different

ways, planning for authentication and encryption/decryption routines. Applying the

Safety/Security analytic approach in a QAW format, the derived and implied

requirements are likely to elucidate the following requirements:

 Ability to constantly monitor the network to detect and counteract
active or passive intrusion or attacks

 Ability to provide details of attacks to Intelligence/Counter Intelligence
personnel

 Ability to conduct passive measures to ensure that all node operations
are conducted with authorized personnel exclusively

 Ability to quarantine a suspect node without impacting the rest of the
network. Ability to lift the quarantine when properly authenticated.

 Ability to identify information provided to, or requested by the
quarantined node for Intelligence/Counter Intelligence analysis

 Passive ability to authenticate information sources

 Ability to interoperate with other secure devices and networks without
the risk of compromise

 Ability to accommodate network system changes and upgrades

 Ability to accommodate a wide array of users and organizations,
formed into the secure network task force as missions dictate

The difference in the level of requirement development is significant, and the

more complete information provides necessary performance thresholds that must be

accommodated by the software design and development effort. The software

architecture would likely be vastly different when the implied and derived security

requirements are considered. Due to the QAW process including the MUIRS

analyses, the amount of work required to meet the actual software security-

- 8 -

performance attributes is revealed to the contractor prior to proposal preparation—

which should vastly improve the cost and schedule accuracy of the proposal

submitted. In addition, the software engineer gains a much more in-depth

understanding of the system being developed, thereby improving the design effort

described later.

Similar analyses of all MUIRS elements provide a much more complete

understanding of requirements and insight into the operational environment

envisioned by the warfighter and the interoperability evolutions (OA requirements)

envisioned by the user/combat developer. This level of understanding is absolutely

crucial for effective design of the software architecture. If the design effort is started

without this level of understanding of the requirement attributes, significant

architectural design rework or outright scrapping of early design attempts is

inevitable—resulting in increased costs and lengthened schedules.

e. Requirements Analyses Investment in Program Success

This front-end analysis requires a significant investment of time, personnel, and

funding resources to produce the level of detail in the performance specification and

RFP needed by potential software developers. With the continued emphasis on

reducing the acquisition cycle, there is a temptation to rush through this analysis and

rapidly produce and distribute the RFP to potential developers with the rationale that

missing detail will be fully discovered in post-contract IPT sessions. This technique,

combined with the immature software engineering environment, vastly increases the

probability that the proposals will be significantly understated in schedule and cost

as the software developer inaccurately estimates workload from high-level and

vaguely stated requirements. As the requirements and workload are revealed in

post-contract IPT sessions, the program suffers contract “scope creep” resulting in

avoidable cost and schedule overruns or baseline breaches. In addition, if the

requirement detail is discovered after the software architectural design has been

initiated, which is likely, much of the effort may require rework or outright scrapping

of the initial design. With the software developer devoting over 50 percent of the

- 9 -

effort in this design effort, the negative impact to program cost and schedule is likely

to be significant.

The organizations responsible for the analytical effort may need to have

augmentation to reasonably complete the tasks identified in this research.

Augmentation is available from professional organizations, such as the Software

Engineering Institute (SEI), the US Air Force’s Software Technical Support Center

(STSC), or other sources including Program support contractors. Whatever the

source, the advantages gained from this type of analysis far outweigh the costs.

The resource investment in the front-end requirements analysis and elicitation

is an investment in program success. The expected return on investment (ROI) is

vastly improved proposal accuracy, significantly reduced design rework and scrap,

and a net reduction in program cost and schedule. Included in this ROI is the

significant management time and effort saved from managing cost and schedule

overruns and the extreme effort in responding to Nunn-McCurdy baseline breaches.

(USC Title 10, Section 2433, 1)

- 10 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 11 -

3. Software Architecture Characteristics

a. Software Developer Effort
In past acquisition programs, software development was considered

something that could be fielded and then “fixed” after the weapon systems were

deployed. The complexity of software, interface problems and the cost for rework

were grossly underestimated; the result was costly schedule slips and less-than-

desired performance.

When software development was in its infancy in 1968, Alfred M. Peitrasanta

at IBM Systems Research Institute wrote:

Anyone who expects a quick and easy solution to the multi-faceted problem
of resource estimation is going to be disappointed. The reason is clear;
computer program system development is a complex process; the process
itself is poorly understood by its practitioners; the phases and functions which
comprise the process are influenced by dozens of ill-defined variables; most
of the activities within the process are still primarily human rather than
mechanical, and therefore prone to all the subjective factors which affect
human performance. (Pietrasanta, 1968, p. 342)

After numerous, costly software disasters, we have learned that software

development must be a parallel effort with system development within the acquisition

framework to ensure that requirements are being met and usable products are being

delivered to the warfighter. The requirements for the software should be developed

concurrently with the system requirements,. One critical factor in the software

development effort is applying systems engineering discipline to the process and

ensuring that discipline is continuous and rigorous throughout system development.

Software development has the highest degree of program risk and tends to evolve

into a state of turmoil, which is detrimental to the goal of mission-ready software and

has a negative impact on cost, schedule and performance.

- 12 -

b. Software Functionality and Design Architecture
The design of the architecture begins with the description of the system and

identifies the functions required for the system to provide the capabilities desired.

The required functions will drive the design of the system architecture including OA

elements. System functionality and performance requirements are documented in

the Government’s Request for Proposal (RFP). The potential contractor must break

down those functions and performance requirements and consider Maintainability,

Upgradeability, Interfaces/Interoperability, Reliability, Safety and Security (MUIRS) in

the design-decision process. Utilization of the MUIRSS analysis will ensure the

contractor understands the requirement and will also identify any limiting factors in

the system requirements trade-offs. The desired functionality and the analysis will

drive the system architecture. For software-intensive acquisition programs, it is even

more critical that the performance requirements be communicated and understood

by the software developer.

c. Work Breakdown Structure
The Government’s requirements and specifications for a new weapon system

are detailed in the RFP; this includes a Government-produced Work Breakdown

Structure (WBS) (composed of at least three levels). This is known as the Program

WBS and is handed off to the contractor to develop a WBS that defines the level of

detail required for product development. This contractor-generated product will

ensure the system developer understands the program objectives and the products

to be delivered in performance of the contract. The WBS details the functionality and

performance of the system and provides a baseline to track performance against

cost and schedule. For most hardware-centric programs, a WBS for the top three

levels of the system under development is usually enough detail to manage the

program. Because of the volatile nature of software development, immature software

engineering environment, and the potential impact to cost, schedule and risk, the

WBS for software-intensive programs needs to be developed down to Level 5 or

lower—including system-of-systems (SOS) and net-centric systems development.

- 13 -

Level 1 of the WBS describes the entire project. If the program is a systems-

of-systems (SoS) or net-centric project, Level I becomes that overarching systemand

helps describe the interoperability concepts driving the need for OA design. For

instance, the Army Future Combat System (FCS) has a number of platforms that are

segments of the total system. Each platform becomes a major segment of that

product (Level 2); the software development would then be broken down to Level 6,

which identifies software-configuration items.

 Using the FCS as an example, Level 1 describes the overall FCS concept

and environment. Level 2 details the major product segments of the SOS. In our

example of the FCS, the Level 2 would be the manned systems, i.e., infantry-carrier

vehicles, command vehicles, mounted combat systems, etc.

Level 3 defines the major components (or subsets) of Level 2. For software

development, decomposition of the software WBS to the lowest component is critical

for the developer to fully comprehend the detailed level of effort required to design

and develop effective systems. Under the FCS scenario, Level 3 would be one of the

subsystems onboard the manned systems, e.g., the fire-control systems and

environmental-control systems. It is clear that WBS definition to this level provides

only a very top-level insight to the system being developed; thus, for the software-

intensive system, the WBS fails to convey enough information for the contractor to

propose a realistic cost and schedule estimate. Too much of the software

development work is hidden at this level.

Level 4 becomes a breakout of the component parts of the subsystem. Using

a manned vehicle in the FCS program, Level 5 of the WBS would identify the

component functions for the fire-control system: for example, detect the target, aim

at the target and fire the munitions. The software build-set would support the

functionality of that component within the subsystem. Again, using the FCS as the

overarching program, Level 6 is a sum of software items (SI’s) which satisfy a

required function and are designated for configuration management. If the software

requirements or attributes are well defined, the result is a product that is properly

- 14 -

designed to functionally perform to the users’ requirements. Further development

below Level 6 may be necessary to adequately convey the derived and implied

requirements to the software developer.

d. Systems Engineering Process
Just as it supports hardware development, the Systems Engineering Process

(SEP) is essential in the development of software design. In software development,

good quality and predictable results are paramount goals in creating the specified

warfighter capabilities within cost and schedule constraints. To accomplish those

goals, we examine the methods, tools and processes the software developer uses in

building the software with the intent of attaining a product that provides all of the

necessary functionality and is supportable, efficient, reliable and easy to upgrade.

The SEP also helps identify and manage program risk. How mature are the

processes of the software developer? One cause for delays and cost overruns in the

C-17 Globemaster program was the contractor’s lack of software experience, which

is a critical element of the developer’s maturity. To address developer maturity, SEI

developed an evaluation tool in the mid-1980s known as the Capability Maturity

Model (CMM), which rates software developers on key elements of maturity,

including experience, processes, management and demonstrated predictability. This

method gives the DoD insight into the maturity of potential developers as a means of

risk reduction.

The system requirements, stated in the RFP, detail the software’s functions,

what it must do and how well, under what conditions, and identifies interfaces and

interoperability requirements. The performance requirements are also analyzed for

required response time, maintainability and modularity, open-architecture

requirements and transportability. This phase of the SEP also addresses any

restricting factors—for example, interface with legacy systems, any required

operating systems—and identifies issues such as data and software rights

constraints.

- 15 -

The developer then identifies software attributes and decomposes functions

to the lowest level, ensuring that each performance specification in the RFP has, as

a minimum, one function. The functional architecture, the block diagrams and

software interfaces are described during this step.

These functions are then combined into a system that describes the

architecture, defines all interfaces, explains operating parameters, produces the SI’s

and develops the documentation, technical manuals, and any deliverable media

(Kazman, Klein, & Clements, 2000, August, p. vii).

e. Attribute-driven Design
“Quality attribute goals, by themselves, are not definitive enough either for
design or for evaluation” (Barbacci et al., 2003, August, p. 3).

The design of the system architecture will be driven by the quality attributes

requirements. The performance goals of the system must be defined—not only in

attributes or qualities, but also in how those attributes interact or interface with the

system and subsystems, including future systems interoperability, thus driving the

need for OA design. If those attributes are poorly communicated, the architectural

design will fail to meet the performance goals and could potentially impact the

overall program cost and schedule. Those critical attributes or qualities must be

carefully documented and articulated to the software designer. To evaluate the

architecture, the designer must receive a detailed description of the desired

attributes within the overall proposed design of the system. However, in the

evaluation of the design, an analysis of the attributes may not be enough detail for

the developer. The RFP or performance specification needs to address any

operational requirements or constraints. Clearly, understanding the attributes in the

context of how they are used is critical for the software designer.

- 16 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 17 -

4. Software Architecture Analysis

If a software architecture is a key business asset for an organization, the
architectural analysis must also be a key practice for that organization. Why?
Because architectures are complex and involve many design trade-offs.
Without undertaking a formal analysis process, the organization cannot
ensure that the architectural decisions made—particularly those which affect
the achievement of quality attributes such as performance, availability,
security, and modifiability—are advisable ones that appropriately mitigate
risks. (Kazman et al., 2000, August, p. vii)

This quote from the Software Engineering Institute illustrates the importance

of performing architectural analysis in developing software-intensive systems.

After thorough requirements development and elicitation, architectural

analysis is the next necessary step in managing the software development; this

analysis serves as the SEP functional allocation step. Defining the requirements

and software quality attributes by the DoD community (users, PMs, & stakeholders)

is a critical first step to any program development and provides the basis for

architectural analysis. One of the main functions of the architectural analyses is to

understand how the quality attribute is being achieved by the design architecture

and, just as importantly, to gain insight into how those attributes interact with each

other. For example, it is crucial to understand how security is ensured while the

open-system architecture (OA) the DoD requires is maintained.

a. Understanding Quality Attributes in Context
It is not sufficient to understand a quality attribute without understanding the

context in which it will be used and sustained by the warfighter. One method of

gaining the needed context is to develop operational scenarios that would place all

software quality attributes into system-use cases spanning key effectiveness and

suitability issues. The development and prioritization of the operational scenarios

must be accomplished by the user, combat developer, warfighter, and other

stakeholders—keeping them actively engaged in the developmental process.

- 18 -

The context in which the attributes function provides significant design cues to

the software engineer. For example, the M1A2 Abrams main battle tank uses

numerous inputs for precisely engaging threat targets. Several such inputs are

essential for any acceptable probability of hitting the desired target, including target

acquisition (finding the target), location (azimuth and range), aiming/tracking, and

firing the projectile. To increase accuracy, several other systems are employed that

enhance one or more of the essential functions, including cross-wind sensor,

temperature sensor, muzzle-reference system, and others. The tank main-gun

engagement scenario separates the essential functions from the enhancing

functions, allowing the software engineer to design the software to permit an

engagement when all of the essential functions are operational—even when an

enhancing function, like the temperature sensor, is not working. The warfighter can

continue to fight effectively using the system, increasing mission reliability. Without

development of these scenarios, every requirement and quality attribute appear to

be in the “essential” category, which may result in a design that precludes critical

operations when a non-essential, enhancing system is not working.

b. Operational Scenario Development
A scenario is a short statement describing an interaction of one of the

stakeholders with the system (Kazman et al., 2000, August, p. 13). A warfighter

would describe using the system to perform a task or mission in a range of

environments (dark, cold, hot, contaminated, etc.). A leader would describe system

employment in concert with other joint and allied systems in a system-of-systems

approach, driving the developer towards understanding a portion of the OA

requirements in context. A system maintainer would describe preventative or

restorative maintenance tasks and procedures. A trainer would describe programs

of instruction to task, condition and standardize.

Much of the necessary operational scenario development work has been

accomplished through implementation of the Joint Capabilities Integration and

Development System (JCIDS) (Chairman of the Joint Chiefs of Staff, 2005, May).

JCIDS is the users’ capability-based requirements generation process, providing a

- 19 -

top-down baseline for identifying future capabilities. It uses a Concept of Operations

(CONOPS) analysis technique to assess current systems’ and programs’ abilities to

provide the warfighter with capabilities to accomplish missions envisioned in the

applicable CONOPS. These CONOPS provide the basis for operational scenario

development.

Two of the JCIDS key documents, the Capabilities Design Document (CDD)

and Capabilities Production Document (CPD):

State the operational and support-related performance attributes of a system
that provide the desired capability required by the warfighter, attributes so
significant that they must be verified by testing and evaluation. The
documents shall designate the specific attributes considered essential to the
development of an effective military capability and those attributes that make
significant contribution to the key characteristics as defined in the [Joint
Operations Concepts] JOpsC as [Key Performance Parameters] KPPs.
(Chairman of the Joint Chiefs of Staff, 2005, May, p. A-17)

Key system attributes within the context of the CONOPS are the genesis of scenario

building and will help guide the user in developing a prioritized set of operational

scenarios considered essential in designing the software architecture.

c. Failure Modes and Effects Criticality Analysis (FMECA)
Failure Modes and Effects Criticality Analysis (FMECA) is a type of

exploratory scenario analysis designed to expose potential failure modes and their

impact on the system’s functionality and mission accomplishment. Scenarios are

developed that explore system operations in likely or critical subsystem failure

modes; then, the criticality of those failures is analyzed. Operations in degraded

modes are also analyzed to gain insight into graceful degradation capabilities as

subsystems fail, and the system is reduced to ever-decreasing levels of basic

functionality. With up to 80% of weapon-system functionality in the system software,

it is critical for the design engineer to understand warfighter needs and expectations

in these failure modes.

- 20 -

FMECA scenarios with the software systems and subsystems provide

architectural design cues to software engineers. These scenarios provide analysis

for designing redundant systems for mission-critical elements, “safe mode”

operations for survivability- and safety-related systems, and drive the software

engineer to conduct “what if” analyses with a superior understanding of failure-mode

scenarios. For example, nearly all military aircraft are “fly-by-wire,” with no physical

connection between the pilot controls and the aircraft-control surfaces, so basic

software avionic functions must be provided in the event of damage or power-loss

situations to give the pilot the ability to perform basic flight and navigation functions.

Obviously, this would be a major design driver for the software architect.

d. Architectural Trade-off AnalysisSM
The Software Engineering Institute’s Architectural Trade-off Analysis

MethodologySM (ATAM) is an architectural analysis tool designed to evaluate design

decisions based on the quality attribute requirements of the system being

developed. The methodology is a process for determining whether the quality

attributes, including OA attributes, are achievable by the architecture as it has been

conceived before enormous resources have been committed to that design. One of

the main goals is to gain insight into how the quality attributes trade-off against each

other (Kazman et al., 2000, August, p. 1).

Within the Systems Engineering Process (SEP), the ATAM provides the

critical Requirements Loop process, tracing each requirement or quality attribute to

corresponding functions reflected in the software architectural design. Whether

ATAM or another analysis technique is used, this critical SEP process must be

performed to ensure that functional- or object-oriented designs meet all stated,

derived, and implied warfighter requirements. In complex systems development

such as weapon systems, half or more than half of the total software development

effort will be expended in the architectural design process. Therefore, the DoD

Program Managers must ensure that the design is addressing requirements in

context and that the resulting architecture has a high probability of producing the

warfighters’ capabilities described in the JCIDS documents.

- 21 -

The ATAM focuses on quality attribute requirements, so it is critical to have

precise characterizations for each. To characterize a quality attribute, the following

questions must be answered:

 What are the stimuli to which the architecture must respond?

 What is the measurable or observable manifestation of the quality
attribute by which its achievement is judged?

 What are the key architectural decisions that impact achieving the
attribute requirement? (2000, p. 5)

The scenarios are a key to providing the necessary information to answer the

first two questions, driving the software engineer to design the architecture to

answer the third.

The ATAM uses three types of scenarios: Use-case scenarios involve typical

uses of the system to help understand quality attributes in the operational context;

growth scenarios involve anticipated OA design requirements including upgrades,

added interfaces supporting system-of-systems development, and other maturity

needs; and exploratory scenarios involve extreme conditions and system stressors,

including FMECA scenarios (2000, pp. 13-15). As depicted in Figure 2, below, the

scenarios build on the basis provided in the JCIDS documents and requirements

developed through the QAW process. These processes lend themselves to

development in an Integrated Product Team (IPT) environment led by the

user/combat developer and including all of the system’s stakeholders. The IPT

products will include a set of scenarios, prioritized by the needs of the warfighter for

capability. The prioritization process provides a basis for architecture trade-off

analyses. When fully developed and prioritized, the scenarios provide a more

complete understanding of requirements and quality attributes in context with the

operation and support of the system over its lifecycle.

- 22 -

Figure 2. QAW & ATAM Integration into Software Lifecycle Management

Just as the QAW process provides a methodology supporting RFP and

Source-selection Activities, the Software Specification and System Requirements

Reviews (SSR and SRR), the ATAM provides a methodology supporting design

analyses, test program activities, the System Functional and Preliminary Design

Reviews (SFR and PDR). The QAW and ATAM methodologies are probably not the

only effective methods supporting software development efforts, but they fit

particularly well with the DoD’s goals, models and SEP emphasis. The user/combat

developer (blue arrow block in Figure 2, above) is kept actively involved throughout

the development process—providing key insights the software developer needs to

successfully develop warfighter capabilities in a sustainable design for long-term

effectiveness and suitability. The system development activities are conducted with

superior understanding and clarity, reducing scrap and rework, and saving cost and

schedule. The technical reviews and audits (part of the DoD overarching SEP) are

supported with methodologies that enhance both the visibility of the necessary

development work as well as the progress toward completing it.

- 23 -

One of the main goals in analyzing the scenarios is to discover key

architectural decision points that pose risks for meeting quality requirements.

Sensitivity points are determined, such as real-time latency performance shortfalls in

target tracking. Trade-off points are also examined, such as level of encryption and

message-processing time. The Software Engineering Institute explains, “Trade-off

points are the most critical decisions that one can make in an architecture, which is

why we focus on them so carefully” (Kazman et al., 2000, August, p. 23).

The ATAM provides an analysis methodology that compliments and

enhances many of the key DoD acquisition processes. It provides the requirements

loop analysis in the SEP, extends the user/stakeholder JCIDS involvement through

scenario development, provides informed architectural trade-off analyses, and vastly

improves the software developer’s understanding of the quality requirements in

context. Architectural risk is significantly reduced, and the software architecture

presented at the Preliminary Design Review (PDR) is likely to have a much higher

probability of meeting the warfighters’ need for capability.

Together, the QAW and ATAM provide effective tools for addressing problem

areas common in many DoD software-intensive system developments: missing or

vaguely articulated performance requirements, significantly underestimated software

development effort (resulting in severely underestimated schedules and budgets),

and poor communication between the software developer and the Government (both

user and program manager). Both provide frameworks for more detailed

requirements development and more effective communication, but they are just

tools—by themselves, they will not replace the need for sound planning,

management techniques, and effort. Both QAW and ATAM provide methodologies

for executing SEP Requirements Analysis and Requirements Loop functions,

effective architectural design transition from user to developer, and SEP Design

Loop and Verification Loop functions within the Test-case Development.

- 24 -

e. Test-case Development
A significant product resulting from the ATAM is the development of test

cases correlating to the use case, growth, and exploratory scenarios developed and

prioritized. Figure 3, below, depicts the progression from user-stated capability

requirements in the JCIDS documents to the ATAM scenario development, and

finally to the corresponding test cases developed. The linkage to the user

requirements defined in the JCIDS documents is very strong as those documents

drive the development of the three types of scenarios, and in turn, the scenarios

drive the development of the use cases. The prioritization of the scenarios from

user-stated Key Performance Parameters (KPPs), Critical Operational Issues

(COIs), and FMECA analysis flows to the test cases, helping to create a system test

program designed to focus on effectiveness and suitability tests—culminating in the

system Operational Test and Evaluation (OT&E).

The traceability from user-stated requirements through scenario development

to test-case development provides a powerful OA communication and assessment

methodology. OA design requirements are well communicated in context and OA

design verification through the test cases is assured. The growth scenarios and

resulting test cases are particularly suited in addressing and evaluating OA design

requirements as the system evolves over its lifecycle, which is often overlooked in

current system development efforts.

- 25 -

Figure 3. Capabilities-based ATAM Scenario Development

The software developer’s understanding of the eventual performance required

to be considered successful guides the design of the architecture and every step of

the software development, coding, and testing through to the Full Operational

Capability (FOC) delivery and OT&E. Coding and early testing of software units and

configuration items is much more purposeful due to this level of understanding.

The resulting test program is very comprehensive as each prioritized scenario

requires testing or other verification methodologies to demonstrate how the software

performs in each related scenario and satisfies the quality attributes borne of the

user requirements. The testing supports the SEP design loop by verifying that the

software performs the functions allocated to it and in aggregate, performs the

verification loop process by demonstrating that the final product produces the

capability identified in the user requirements through operational testing.

- 26 -

f. Implementing ATAM through Program Design Reviews
The design review process provides an excellent venue for implementation of

the ATAM. The initial design review sessions should be dominated by the user

groups, including key supportability representatives, in presenting the prioritized

operational Use Cases depicted in Figure 3, above. Participation by other key

system stakeholders—including network experts for associated systems, force

development planners for insight into future OA interoperability requirements, and

technical experts—is critical for developing the system’s Growth Scenarios and

Exploratory Scenarios. Modeling and Simulation, and Test and Evaluation

representatives and planners are key in developing the Test Cases and

performance-verification methodologies. The ATAM provides a framework for

effective user-stakeholder-PM-M&S-T&E-contractor integration and collaboration in

designing suitable and effective architectures.

By utilizing this process, stakeholders significantly reduce the risk of

developing a system that does not meet user effectiveness and suitability

requirements. As the design reviews continue through the ATAM to the system

design, communication continues, and mutual understanding of the requirements in

context is enabled. The process provides for a more effective design hand-off from

the Government to the contractor. In addition, the users (and other stakeholders) are

active participants throughout the design process. The contractor has an

opportunity to “buy-in” to the requirements, and the user has the opportunity to “buy-

in” to the system design in a collaborative effort. The ATAM process allows

stakeholder and developer mutual understanding of how the architectural design

process addresses the system requirements within the prioritized, user/stakeholder-

defined scenarios and cases.

The Systems Engineering Process is well supported by this model, with the

ATAM as the vehicle for performing the Requirements Loop analytical process

depicted in Figure 1. Requirements traceability to the Functional Allocation is

accomplished through the ATAM scenario-building process. Because of this method,

system designers can better respond to the scenarios and understand the

- 27 -

performance that needs to be demonstrated in the Verification Loop described by

the ATAM Test Case development.

5. Architectural Analysis Products

a. Architecture Documentation and the Preliminary Design
Review (PDR)
One of the main purposes of the PDR is to evaluate the system’s architectural

design before committing significant resources to the construction of the system. It

is a key review in the SEP as it provides traceability from the requirements to the

functional allocation of the proposed design. The OA attributes of a system should

be evident and assessable at the PDR.

It is critical that stakeholders review a complete functional- or object-oriented

Software Design Document at the PDR because, for a software-intensive system,

the software developer would likely have spent 50% or more of the total effort at the

time of the PDR. Thus, discovering that the proposed software design is insufficient

at this point in the development cycle can be disastrous to the budget and schedule

for the entire program, especially if the proposed design must be scrapped or if

significant redesign is required.

b. Architecture Documentation
Documentation of the process decisions made while designing the software

architecture provides a record of design decisions, trade-offs made, and priorities

implemented throughout the design effort and design reviews. The active

involvement of the user and all system stakeholders throughout this process is one

of the keys to achieving a robust design that provides warfighter capabilities and

long-term, cost-effective sustainability. The ATAM provides methodologies that

formalize the stakeholder participation in the architectural design.

The ATAM would help drive documentation from quality attributes to both the

three types of prioritized scenarios as well as to the test cases needed to

- 28 -

demonstrate or verify performance. The quality attributes are understood in the

context of the user-prioritized scenarios, so design decisions have strong linkage to

user priorities. The test cases help guide the design effort; they clarify for the

software engineer what the software must do, under what conditions, and to what

standard. Design reviews each have a clearly defined focus, with the ATAM

products providing a common understanding of what is to be accomplished.

c. Scenario Inventory
One of the main results of the ATAM is the prioritized inventory of use-case,

growth, and exploratory scenarios that drive the architectural design. As the user

(along with other stakeholders) is the primary source for scenario development, the

resulting design is user-oriented, not engineer-oriented.

The growth scenario inventory is critical for the software developer to design

the OA structure accommodating the interoperability requirements identified through

developing these scenarios. With the understanding of how the system is intended

to evolve – integrating new systems and subsystems, major rehosting and software

reengineering plans, and other lifecycle interoperability issues identified, the

developer is able to more effectively design the architecture to accommodate the

planned system evolution.

The prioritization of the scenarios provides the basis for trade-off analyses

and design decisions, placing trade-off decisions where they should be—with the

warfighter. With the user involved throughout the design process, the resulting

system is much more likely to satisfy warfighter capability requirements.

d. Software and System Test Program
The development of test cases from the scenarios, as depicted in Figure 3

above, provides the Design Loop function of the SEP by ensuring that the software

developed performs the functions defined by the scenarios, which represent the

quality attribute requirements in context. The inventories of test cases are

developed from the user-defined scenarios, so there is one or more test case for

- 29 -

every scenario. The test cases will tend to satisfy both technical issues (as the

software developed will be tested against its intended function) as well as

operational issues (as each function is borne of the users’ scenarios).

The aggregated test cases are part of the system’s overall test program and

contribute to readiness for the Initial Operational Test and Evaluation (IOT&E). The

IOT&E is the defining event in the SEP Verification Loop, ensuring that the software

developed satisfies user effectiveness and suitability requirements and meets

warfighter capability needs specified in the JCIDS documents.

e. Software Design Metrics
From the DoD’s point of view, gaining insight and control of the software

design process is crucial to delivering the warfighter capabilities required initially and

throughout the system’s lifecycle. In addition, metrics provide a means to monitor

and control the process. The metrics chosen must provide the DoD insight into how

the software architecture is designed; they must illustrate how that design satisfies

quality attributes and requirements across a broad spectrum of functionality and in

terms of long-term sustainability performance driving OA design. In addition,

technically oriented design metrics such as complexity are also important, but are

not the focus of this research.

The system’s architectural design is very much a shared responsibility

between the DoD and the software developer, so metrics must also reflect

developmental measures spanning both. For instance, in order for the completed

set of prioritized scenarios to be designated as a design metric, stakeholders must

measure the build of the scenarios in a collaborative user/stakeholder/developer

environment.

Using the completion of the ATAM products as metrics is logical as they are

measurable, are key processes in the architectural design, and serve as indicators

to the progress towards successfully completing the design process. Useful ATAM-

based metrics would include:

- 30 -

 Business Drivers Developed

 Prioritized Scenario Sets Developed

 Attribute Utility Tree Created

 Sensitivity Points & Trade-off Points Recorded

 Architecture Approach Documented

- 31 -

6. Summary

The main goal of the DoD acquisition process is to develop identified

warfighter capabilities within predicted and controlled timelines and cost targets; yet,

many software-intensive systems developed have experienced significant cost and

schedule growth due, at least in part, to the software development component.

There are many factors that contribute to the problem—including how and when the

DoD conveys the needed quality attribute requirements.

The DoD acquisition model uses the Systems Engineering Process (SEP) as

the central method for controlling the development of its systems. The SEP is an

integrated process with the DoD and the contractors selected, thereby urging shared

responsibility for effective systems development. The process begins and ends with

the user or combat developer responsible for providing the capabilities-based

requirements, which are further developed and decomposed by the Program

Manager and contractors responsible for building the system. The system

components are constructed, integrated and continually tested, culminating in the

user’s acceptance testing, usually the Initial Operational Test and Evaluation

(IOT&E).

A key to the SEP implementation is effective and complete development and

communication of the system requirements. This must happen at some point for any

system to be successfully developed; but when it happens is extremely important to

the cost and schedule estimate accuracy. When the contractor has a good

understanding of the work to be completed from the requirements presented, more

accurate estimates are offered in the contractor’s proposal before the program

schedule is locked in with a contract. If a significant portion of the work is

discovered through requirements decomposition after the contract is in place (typical

of software components), the estimates provided in the proposal are likely severely

understated, and the program schedule and budgets are no longer appropriate.

- 32 -

One reason the software component is more sensitive to a system’s

requirements development is that the software engineering environment is immature

when compared to most hardware-centric environments. Vague or missing

requirements for a hardware item may be compensated by a mature engineering

environment that accommodates implied essentials. For instance, the automotive

industry would provide the ability to easily replace normal wear-out items like filters

and tires, whether or not such provisions were specified. The software engineering

environment does not offer that level of maturity.

The MUIRS analytical technique helps capture software performance

requirements that are routinely overlooked in the immature software engineering

environment. The MUIRS analysis helps obtain and convey Open Architecture (OA)

needs, safety and security considerations, and long-term supportability performance

needed by the warfighter.

In addition to simply understanding the breadth of system requirements, the

software engineer needs to understand them in context of the system’s future

operations, supportability, and environments to design a software architecture that is

effective. It is not enough to understand what the software must do; the engineer

must understand under what circumstances, in what environments, and to what

standard the function must be performed.

What the DoD needs to improve the acquisition of software-intensive systems

are methodologies that capture and convey quality attribute requirements in an

operational context, within a Systems Engineering Process environment. The

Software Engineering Institute’s Quality Attribute Workshop (QAW) and Architecture

Trade-off Analysis Methodology SM (ATAM) provide well-suited techniques for

developing requirements in context. The QAW process, employed before

contracting, helps provide enough requirements elicitation for more accurate

contractor proposals; likewise, the ATAM helps provide the operational context

through scenario and test-case development before the software design effort. Both

- 33 -

products support the SEP, providing methodologies for performing critical SEP

functions.

DoD personnel (user/combat developer and Program Manager/materiel

developer) are key and integral to the development of effective and suitable

warfighter capabilities within predictable cost and schedule parameters. Improving

the processes that develop and convey system quality attribute requirements in

context will improve the cost, schedule and performance predictability of software-

intensive systems and will reduce supportability costs over the life of the system.

- 34 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 35 -

List of References

Barbacci, M., Ellison,R., Lattanze, A., Stafford, J., Weinstock, C., Wood, W. (2003,
August). Quality attribute workshops (QAWs) (3rd ed.) (CMU/SEI-2003-TR-
016). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University.

Chairman of the Joint Chiefs of Staff. (2005, May). Joint capabilities integration and
development system (Chairman of the Joint Chiefs of Staff Instruction
(CJCSI) 3170.01E). Washington, DC: author.

Defense Acquisition University. (2004, December). Defense Acquisition Guidebook.
Retrieved March 1, 2007, from
http://akss.dau.mil/dag/DoD500.asp?view=document.

United States Code, Title 10, Subtitle A, Part IV, Chapter 144, Sections 2433 – 2435
(Nunn-McCurdy breach)

Department of Defense. (2005, July). Work breakdown structures for defense
materiel items (MIL-HDBK-881A). Department of Defense Handbook.
Washington, DC: author.

Humphrey, W. (1990, August). Managing the software process. Reading,
Massachusetts: Addison-Wesley Publishing Company..

Kazman, R., Klein, M., & Clements, P. (2000, August). ATAM:SM Method for
architecture evaluation (CMU/SEI-2000-TR-004). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Kruchten, P. (2005, March/April). Software design in a postmodern era. IEEE
Software, 18(2), 17.

Naegle, B.R. (2006, September). Developing software requirements supporting open
architecture performance goals in critical DoD system-of-systems. Acquisition
Research Sponsored Report Series (NPS-AM-06-035). Monterey, CA: Naval
Postgraduate School.

Pietrasanta, A.M. (1998). Current methodological research. In ACM National
Conference (USA). New York: ACM Press, 341-346.

Software Engineering Institute/Carnegie Mellon Software Architecture. (2007). The
importance of software architecture. Retrieved March 1, 2007, from
www.sei.cmu.edu/architecture/index.html.

- 36 -

THIS PAGE INTENTIONALLY LEFT BLANK

- 37 -

2003 - 2007 Sponsored Acquisition Research
Topics

Acquisition Management

 Software Requirements for OA
 Managing Services Supply Chain
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 Knowledge Value Added (KVA) + Real Options (RO) Applied to

Shipyard Planning Processes
 Portfolio Optimization via KVA + RO
 MOSA Contracting Implications
 Strategy for Defense Acquisition Research
 Spiral Development
 BCA: Contractor vs. Organic Growth

Contract Management

 USAF IT Commodity Council
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Navy Contract Writing Guide
 Commodity Sourcing Strategies
 Past Performance in Source Selection
 USMC Contingency Contracting
 Transforming DoD Contract Closeout
 Model for Optimizing Contingency Contracting Planning and Execution

Financial Management

 PPPs and Government Financing
 Energy Saving Contracts/DoD Mobile Assets
 Capital Budgeting for DoD
 Financing DoD Budget via PPPs
 ROI of Information Warfare Systems
 Acquisitions via leasing: MPS case

- 38 -

 Special Termination Liability in MDAPs

Logistics Management

 R-TOC Aegis Microwave Power Tubes
 Privatization-NOSL/NAWCI
 Army LOG MOD
 PBL (4)
 Contractors Supporting Military Operations
 RFID (4)
 Strategic Sourcing
 ASDS Product Support Analysis
 Analysis of LAV Depot Maintenance
 Diffusion/Variability on Vendor Performance Evaluation
 Optimizing CIWS Life Cycle Support (LCS)

Program Management

 Building Collaborative Capacity
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Terminating Your Own Program
 Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research within the Acquisition
Research Program are available on our website: www.acquisitionresearch.org

- 39 -

Initial Distribution List

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944; Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 2
Naval Postgraduate School, Monterey, CA 93943-5100

3. Research Office, Code 09 1
Naval Postgraduate School, Monterey, CA 93943-5138

4. Robert N. Beck 1
Dean, GSBPP
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

5. Keith F. Snider 1
Associate Professor, GB
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

6. James B. Greene 1
Acquisition Chair, GB
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

7. Bill Gates 1
Associate Dean for Research, GB
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

8. Brad Naegle 1
Lecturer, GB
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

9. Diana Petross 1
Lecturer, GB
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

10. Karey L. Shaffer 1
Program Manager, Acquisition Research Program, GB
555 Dyer Road, Naval Postgraduate School, Monterey, CA 93943-5000

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

